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The generation of internal waves in a submarine rectangular trench by normally 
incident surface waves has been investigated through laboratory experiments and 
theory. A linear model was developed for small-amplitude, simple harmonic wave 
motions. In this model, the fluid outside the trench is homogeneous, and the fluid in 
the trench is composed of two homogeneous layers of different densities separated by 
a transition region of linear density variation ; viscous dissipation is treated based on 
the assumption of a laminar boundary layer. In the experiments, the stratification 
in the trench was created using fresh water and salt water, and a scanning laser beam 
and detector system was used to measure the amplitude of internal waves. The study 
shows that, when the frequency of the surface waves corresponds to the natural 
frequency of internal waves, the amplitude of internal waves becomes large 
compared to the amplitude of surface waves. The natural frequency of oscillation of 
internal waves decreases as the thickness of the density interface increases and the 
depth of the lower fluid decreases. Two distinct classes of internal waves were 
observed, namely, standing internal waves when the lower fluid was deep, and 
travelling internal waves when the lower fluid was shallow. The linear model 
predicted the response curve for internal waves quite well in all the cases investigated. 
I t  was also found that the internal waves were strongly damped when the depth of 
the lower fluid was small compared to the wavelength of internal waves. 

1. Introduction 
This paper is concerned with the generation of internal waves in a submarine trench 

that is partially filled with a heavier fluid; the fluid outside the trench is 
homogeneous. The motivation for this work is the effects of waves on dredged 
navigation channels with a layer of fine sediment in suspension near the bottom. 
Such dense layers may result from the entrainment of fine bottom material by waves, 
currents, and the passage of ships. An example of a harbour where this type of dense 
lower layer is present is Europort (Holland), where the bottom was defined as a 
region where the specific gravity of the fluid was larger than 1.2 (Marine Board 
(National Research Council) 1983). The density-stratified fluid in these channels can 
have an influence on the kinematics around the perimeter of the trench as a result 
of internal waves generated in the trench. This is because large-amplitude internal 
waves within the trench could result in fluid velocities near the trench boundaries 
that may be significantly larger than those corresponding to a homogeneous fluid, 
leading to more serious bottom erosion. The dynamics of internal waves in a 
rectangular trench due to surface waves that propagate in a direction perpendicular 
to the longitudinal axis of the trench are discussed herein using the results of theory 
and controlled laboratory experiments. 

The propagation of time-periodic water waves past a rectangular trench with a 



256 F .  C .  K .  Ting - Wave direction 
V 

1 7 - - 

Dredged 
navigation 

channel 
FIQURE 1. Schematic drawing of a dredged navigation channel. 

homogeneous fluid in the trench has been studied by Lee & Ayer (1981), Miles (1982), 
and Kirby & Dalrymple (1983). Primary interests in those studies are related to the 
phenomenon of wave scattering, in which strong reflection of the incident waves can 
occur for suitable dimensions of the trench relative to  the wavelength of the incident 
waves. It was found that for a particular symmetric trench where the water depths 
before and after the trench were equal, there existed an infinite number of discrete 
wave frequencies at which the incident wave energies were fully transmitted, the 
maximum and minimum values of the transmission and reflection coefficients 
appeared periodically, but the effect of the trench on wave energy transmission 
decreased monotonically as the wavelength decreased. Based on the formulation by 
Lee & Ayer (1982), Ting & Raichlen (1986) showed that the wave energies trapped 
within the trench were very small compared to the energies in the incident waves. 

An important aspect of the interaction of surface waves with a density-stratified 
fluid in a submarine trench is the resonant oscillations of internal waves in the 
trench; this is illustrated in figure 1. The dynamic pressure associated with the 
surface waves induces a flow in the trench that displaces the heavier fluid and, 
through the action of buoyancy forces, generates internal waves that propagate to- 
and-fro between the walls of the trench. When the frequency of the surface waves 
corresponds to the natural frequency of the internal waves, the internal waves can 
attain large amplitudes relative to  the surface waves. Thus, for a particular trench 
geometry relative to  the characteristic lengthscale of the surface waves, the density- 
stratified fluid within the trench may be excited into a mode of resonant oscillation. 

The excitation of internal waves in a rectangular trench by normally incident 
surface waves has been studied experimentally and theoretically by Ting & Raichlen 
(1988). Their analysis dealt with small-amplitude waves and an inviscid two-layer 
fluid in the trench, whereas fresh water and salt water were used to  create the density 
stratification in the experiments. It was observed that a t  resonance the amplitude of 
the internal waves was large compared to the amplitude of the surface waves, but the 
effects of the internal waves on the surface waves were not measurable. The 
theoretical solutions predicted the wave motions quite well even for relatively large- 
amplitude waves in the trench. 

In  this study the effects of a diffuse density interface are examined ; a continuously 
stratified fluid in the trench is approximated by a three-layer fluid that is composed 
of two homogeneous fluids of different densities separated by a transition region of 
linear density variation. In  order to formulate this problem analytically, the 
Boussinesq approximation is made. This neglects variations of density in the 
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Navier-Stokes equations in so far as they affect inertia, but retains them in the 
buoyancy term. Thus, the three-layer model is limited in its application to a fluid 
whose overall density variations are small. It will also be assumed that the fluid 
motions in the trench are excited by small-amplitude water waves. Viscous 
dissipation will be treated based on the assumption of a laminar boundary layer. It 
is noted that laminar flow is applicable mainly to laboratory conditions, and is used 
here merely to show the sensitivity of the internal wave motions to viscous effects. 
Wall friction plays an important role in internal wave damping in submarine 
trenches. This is because if the effects of flow separation at  the edges of the trench 
are neglected, the amplitudes of the internal waves are limited only by boundary 
friction and radiation losses. Radiation losses represent the energies in the waves 
scattered by the trench, but in this case the stratified fluid is confined to the trench 
so that the energies of the internal waves are largely trapped within the trench. 

The nature of the internal waves in the trench is a major interest in this study. 
Thorpe (1968) has made an extensive study, both theoretical and experimental, of 
standing internal waves at the interface of two fluids and in a continuously stratified 
fluid. For the two-layer problem, his method of analysis was similar to the 
perturbation scheme in Stokes waves. Thorpe (1968) represented the finite-amplitude 
wave solutions in the form of power series expansions with respect to the wave slope 
as the expansion parameter. As in Stokes waves, the second-order term of the 
internal wave solution distorted the symmetric waveform of the linear solution given 
by the first-order term, whereas the distance from trough t o  crest remained the same 
for the second-order approximation. The ratio of the coefficient of the second-order 
term to that of the first therefore represented a measure of nonlinear effects in the 
internal waves. Thorpe (1968) showed that the presence of the upper fluid reduced 
the amplitude of the higher harmonics in the wave profile. This conclusion was 
previously reached by Hunt (1964, who studied standing waves at the interface 
between two semi-infinite fluids. Using the results of theory and experiments, we 
shall demonstrate that, for weakly nonlinear internal waves, a linear model of 
wavetrench interaction can predict the wave motions in a laboratory trench quite 
well, even for relatively large-amplitude waves in the trench. 

Thorpe’s finite-amplitude wave theory becomes invalid when the depth of the 
stratified fluid is so small compared to the wavelength of the internal wave that the 
ratio of the amplitude of the second harmonic to that of the first is of order unity. 
In this case the theory of long waves should be used to formulate the problem. 
Benjamin ( 1966) demonstrated that, for internal waves whose wavelengths were 
very large compared to the total fluid depth, the relative importance of nonlinear 
effects to dispersive effects was indicated by the ratio eH,Zi/h;, which for waves of 
permanent form was of order unity. Here, H,, I , ,  and h, refer to a characteristic wave 
height, wavelength and depth, and E represents the fractional change in density over 
the depth of the fluid. Benjamin (1967) considered a different situation in which the 
density of the fluid varied only within a layer whose thickness was much smaller than 
the wavelength of the internal wave, while the total depth of the fluid was infinite. 
In this case, H,l/hi  was of order unity for internal waves of permanent form. The 
types of internal waves considered by Benjamin (1966, 1967) may be found in 
submarine trenches, and linear theory will not be applicable here. Long waves in a 
rectangular trench will be discussed with respect to experimental results. 

The response of a fresh water-salt water fluid in a rectangular trench in a wave 
tank to surface waves generated by a bulkhead wave generator was studied by 
varying the surface wave height, the wave period, and the density stratification in 
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the trench. The major objectives of the experiments were to determine if the linear 
model developed was adequate or if it was necessary to use more complicated models, 
and to examine the importance of different physical effects such as density 
stratification and viscous dissipation on the dynamics of the wave-trench interaction. 

2. Theoretical analysis 
A definition sketch of the theoretical model is presented in figure 2. The fluid 

domain consists of a constant-depth channel connected to a rectangular trench a t  one 
end and a vertical boundary that moves in simple-harmonic motion at the opposite 
end. In early experiments, a beach was placed at  the end of the wave tank to reduce 
the reflection of waves transmitted past the trench from the end of the tank. It was 
found that, owing to the long waves used, the amplitudes of the reflected waves were 
greater than 30 ‘YO of those of the incident waves. Because of the reflections from the 
beach and, thus, the uncertain boundary condition at  the beach, the theoretical 
predictions that were obtained using a model consisting of an infinite ocean and a 
rectangular trench could not be compared to these experimental results. Therefore, 
the theoretical model treated was changed from one consisting of an infinite ocean to 
the one shown in figure 2. This problem can be formulated theoretically and the 
results compared directly to the experimental measurements to establish the 
possibility of using the same theoretical approach for the case with the infinite 
region. 

As shown in figure 2, the density distribution in the trench is represented by a 
three-layer fluid, which is composed of two homogeneous fluids of different densities 
separated by a transition region of linear density variation, and the density 
transition region is confined to the trench. The fluid is assumed to be inviscid and 
incompressible, but the fluid motion is not irrotational, owing to vorticity generated 
in the continuously stratified transition layer. A partial differential equation (Love’s 
equation) can be obtained from the equations of motion by a standard perturbation 
procedure. For simple-harmonic motion, the Love’s equation is reduced to a second- 
order ordinary differential equation with variable coefficients, which together with 
the boundary conditions, specify an eigenvalue problem. By applying the Boussinesq 
approximation to a three-layer fluid, the ordinary differential equation is changed 
into one with constant coefficients, which can be solved analytically. The solution in 
the trench region is expanded in terms of an infinite series of mutually orthogonal 
eigenfunctions. A similar procedure yields the series expansion solutions in the 
constant-depth channel. The horizontal and vertical velocities are matched along a 
vertical boundary at the edge of the trench to obtain a set of linear integral 
equations, which are solved numerically for the unknown coefficients. 

2.1. The eigenvalue problem 
Let (2, z )  be a Cartesian coordinate system with z extending positive upwards from 
the undisturbed free surface and the bottom located at  z = - h, . The density of the 
fluid p is continuous in the interval -h, < z < 0. The horizontal and vertical 
components of the fluid velocity in the positive x-direction and the positive z- 
direction are denoted by u(x, z,  t )  and by w(x, z,  t ) ,  respectively. We shall investigate 
steady-state wave motion of the form 

w(x, z , t )  =f(z) ei(Kz-ot), (1) 

in which K is the wavenumber and CT is the circular frequency. 
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I '  
X 

P = P1-@*-PJ (z+h1)/6 

FIQIJRE 2. Definition sketch of the three-layer model. 

Let the density variation in the quiescent fluid be small compared to a fluid density 
po, the Boussinesq approximation may then be made, and the linear governing 
equation for the vertical velocity is (see, for example, Yih 1980) 

In (2), N is the buoyancy frequency (BrunkVaisiila frequency) given by 

The boundary condition on the free surface is 

and the boundary condition on the bottom is 

f(z) = 0 on z = - h  8 '  (5) 

Note that f and df/dz are continuous in the interval - R ,  < z < 0, and d2f/dz2 is 
continuous in the region where dp/dz is continuous. 

Equations (2)-(5) specify an eigenvalue problem. We are interested in the case 
where u is held fixed and K 2  is the eigenvalue parameter. This is not a standard 
Sturm-Liouville problem because the eigenvalue parameter occurs in the free surface 
boundary condition. We put (2)-(5) in a vector form so that we can do the 
eigenfunction expansion. Consider the space of vectors with the fist component a 
trial function and the second component a, scalar ; for any two such vectors U and V 
given by 

u = (TI), v = (%I), 

we define the inner product 
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We further specify a subspace S of vectors such that #( -hs) = 0 and $o = $(O). Then 
all vectors U E S  are of the form 

Let 

U(z) = ($51) and #( -hs)  = 0. 

then our original eigenvalue problem can be stated as follows 

Y U = a R U ,  U E S ,  

where 

(9) 

The eigenvalue problem specified by (10) and (11)  is self-adjoint, that is, 

(.U, v) = (U,LZV). (12) 
For any two different eigenvalues of the adjoint problem a and /3, and their 
corresponding eigenvectors U and V, it  follows from (12) that 

(RU,  v) = 0 (a =t= p). (13) 
It can be shown that each eigenvalue corresponds to only one eigenvector. Now that 
we have the orthogonality condition (13), we may expand a given vector F(z) in 
terms of a series of these eigenvectors, in the form 

where 

Equations (13) and (14) give the orthogonality condition and the eigenfunction 
expansion for the original problem. It can be shown that the eigenvalues are real, but 
the positive and negative values of K have no upper and lower bounds. The positive 
values of K 2  correspond to the wavenumbers of the propagating waves while the 
negative values of K 2  correspond to  the wavenumbers of the locally bounded 
standing waves that do not propagate. For arbitrary density distribution, (2)-(5) 
must be solved numerically for the eigenvalues and eigenfunctions. Analytical 
solutions for a homogeneous fluid and for a three-layer fluid are presented next. 

2.1.1. Eigenvalues and eigenfunctions of a homogeneous Jluid 
The bottom of the constant-depth channel is specified at x = - h. The normalized 

eigenfunctions corresponding to (2)-(5) with N = 0 are listed in the Appendix and 
are denoted by 2 and 8, (n = 1,2, ...). Any two such eigenfunctions $ ( z )  and $ ( z )  are 
orthogonal in the sense that 
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The corresponding eigenvalues k2 and - f: (n = 1,  2, . . .) are defined by the following 
relationships : 

(17) 

(18) 

crz = gk tanh kh, 

crz = g f ,  tan in h (n = 1,2,  . . . ). 
2.1.2. Eigenvalues and eigenfunctions of a three-layer jluid 

in - h, < z < 0, and JV = 
are defined by the following relationships : 

For the three-layer fluid in the trench, JV = 0 in - (h, + h, + S) < x < - (h,  + 8) and 
= (gAp/p, 6)f in - (h, + 6) < x < - h,. The eigenvalues 

K, cosh Kj h, -KO sinh K, h, 
K, sinh K, h, -KO cosh K, h, 

K, = 0 (j = 1,2 ,... ), (19) 
cosh K,hl -KO sinh K, h, 

K, sinh K, h, -KO cosh K, h, 

and 

I?, cos K, h, -KO sin K, h, 

K, sin I?, h, +KO cos 2, h, 
Qf cosh (&K,S) cot K, h, + 

= O  ( n =  1,2,  ...), (20) 
If, ,  COSK, hl-KO sinK, h, 

I f ,  sin I?, h, +KO cos I?, h, 

( 
+sinh (QfK,S)(S+ 

in which 0 = (N2/cr2- 1) 4 0, KO = cr2/g, and K; ( j  = 1,2, ...) and -@, (n = 1,2,  ...) 
are the eigenvalues of K2.  Equation (19) has an infinite number of roots of Kj if and 
only if 0 > 0. The smallest root K, is the wavenumber of the surface mode. The next 
root K, is the wavenumber of the primary internal mode. The surface mode and 
the primary internal mode usually have wavelengths much larger than S, so that 
KS -g 1 and (19) may be approximated by 

cr*(cothK,h,cothK,h,+ 1 +K,S(cothK,h,+cothK,h,)) 

- crz ’?? cothK, h, + coth K, h, + K, S(coth Kj A, coth K, h, + 1) d, 
+ --1 g 2 q = o  (j= 1,2). t: 1 

Equation (21) is similar to the dispersion relation for a two-layer fluid: 

1 

+ --1 q2K;=0 ( j = l , 2 ) .  (22) t: 1 
Note that (21) does not reduce to (22) exactly when K,S = 0, which is due to the 
Boussinesq approximation ; in the three-layer model the density ratio p2/pl in the 
inertia term is approximated by unity. Equation (21) indicates that when K,S is 
small, the wavenumbers for the first two propagating modes of the three-layer fluid 
would be similar to the wavenumbers of the surface mode and the interfacial mode 
in a two-layer fluid. When 8 < 0, the trigonometric functions sine and cosine in (19) 
become the hyperbolic sine and hyperbolic cosine, consequently K, has only one real 
root corresponding to the wavenumber of the surface mode. 
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for 3 = (T: 

When 0 = 0, the dispersion relation corresponding to (19) is given by the following 

u2 (cothKh, coth Kh, + 1 +KScoth Kh,) 
= gK (cothKh,+cothKh,+KScothKh,cothKh,). (23) 

Equation (23) reduces to (17) when KS = 0. Equation (23) has only one real root 
corresponding to the wavenumber of the surface wave; there is no internal wave. 
Thus, internal waves in the three-layer fluid are possible only when (T < X ;  when 
(T 2 3 only the surface mode exists. In  this study we are interested in the internal 
waves, hence the case 0 = 0 will not be considered in the following analysis. 

Equation (20) always has an infinite number of real roots; these are the 
wavenumbers of the locally bounded standing waves that do not propagate. 
1 The normalized eigenfunctions of the three-layer fluid are denoted by Z,l, ,, and 
Znl,2,3,  (j, n = 1,2, ...) and are listed in the Appendix; the subscripts (1,2,  and 3) 
denote the respective regions shown in figure 2. Any two eigenfunctions q5 and $ are 
orthogonal in the sense that 

2.2. The trench model 
The fluid domain is divided into five regions as shown in figure 2:  

Region 1 p = p l ,  - h , < z < O ,  O < x < l ;  
Region 2 p = p z ,  - (h l+hz+6)  < z < - (h ,+S) ,  0 < x < 1; 
Region 3 p = p l - A p ( z + h l ) / S ,  - ( h l + S ) < z <  -hl ,  O < x < Z ;  

Region4 p = p l ,  - h < z < O ,  - L < x < $ ;  
Region 5 p = pl ,  -h  < z < 0, -I& < x < 0. 

In order to facilitate the numerical treatment of this problem we have divided the 
constant-depth channel into two regions (4 and 5 )  at  x = $. We assume that a t  this 
location the wave motion consists of the left- and right-going progressive waves only ; 
the amplitudes of the locally bounded non-propagating standing waves may be 
neglected when h/L  < 1 because their amplitudes decay exponentially with distance 
from x = 0 and x = -L. 

For steady-state motion, the horizontal velocity and the vertical velocity may be 
written in the form u(x ,  z ,  t )  = u’(x, z )  e-irt, 

w(x, z ,  t )  = w’(x, z )  e-i“t. 
(25) 
(26) 

The spatial velocities u’(x, z )  and w’(x, z )  may be expanded in terms of a series of the 
orthogonal modes found in $2.1. Keeping in mind that u’ and w’ must satisfy the 
continuity equation, the solutions in the trench region are written as 
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where A,, Bj (j = 1,2, ...), and A,, B, (n = 1 , 2 , .  ..) are unknown constants to be 
determined from the boundary and matching conditions. The solutions in the 
constant-depth channel are written as 

, . A  

m 

n-i  

m 

wi(x,  z )  = (Ceik(Z+L)+De- i k ( z + L ) )  z(Z) + 2 6, e-in(”+L) 2,(2), (31) 

wk(x,z) = (Eeikz+k’e-ikz)Z(z)+ @,eLnZ&,(z), (32) 
n=l 

in which C, D,  E, F ,  and en,@, (n = 1,2, . . .) are unknown constants to  be determined. 
The fluid velocities must satisfy the following additional boundary conditions : 

u = 0 on - ( h l + h , + 6 )  c z c -h, x = 0; (33) 

u = 0 on -(hl+h,+6) c z c 0, x = 1 ;  (34) 

on - h < z c O ,  x =  - L ;  (35) 

where S is the stroke of the wave generator. The matching conditions at x = 0 are 

- l&lue-’ut 
u4 - Y 

u1=u5 on - h < z < O ,  x = O ;  

w 1 = w 5  on - h < z < O ,  x=O.  
(36) 

(37) 

Equation (36) is the kinematic matching condition. The dynamic matching condition 
is the continuity of pressure. It can be shown that in the upper layer the pressure 
gradient is related to the vertical velocity by 8ppla.z = iup,w, thus continuity of 
vertical velocity (equation (37)) implies that  the pressure across x = 0 can differ only 
by a constant, which must be equal to  zero from the dynamic free surface condition. 

Equation (34) implies 
B, = A,e2iKrz (j = 1,2, ...), (38) 

B, = d , e Z k n 2  (n = 1,2,  ...I. (39) 
Integrating (35), we get 

1 m 1  
-(C-D)Z(z)+ 76,&,(~) = !$Ju(z+h). 
k n-i k, 

The integration yields the volume flux between - h and z, the constant of integration 
is determined from the condition that the volume flux must be zero at z = - h. Upon 
using (15), we obtain 

xu 
2k 

C-D = -(Ah)-isinhkh, 

where the normalization constants Ah and A t  are listed in the Appendix. 
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trains a t  x = -$, hence 
We assume that the wave motion is asymptotically a superposition of simple wave 

E = CeikL, (43) 

(44) F = De-ikL 

2.2.1. Matching the solutions 
We truncate the infinite series in (27)-(32) after a finite number of terms, given by 

J for the propagating modes and N for the non-propagating " 1  modes. We are then left 
with ( J + 2 N +  1)  unknowns: A j  (j = 1,2,  ..., J ) ,  C, and A,, F ,  (n = 1,2 ,  ..., N). We 
obtain ( J +  2N+ 1) equations by matching the horizontal and vertical velocities in 
the trench region and in the constant-depth channel along a vertical boundary at 
x = 0. First we consider the condition of continuity of horizontal velocity at x = 0. 
Integrating (27) between - (h,  + h, +6) and z ,  we obtain the volume flux & ( z )  at x = 0: 

(45) 
J i  N 1  

f = 1  K I n-1 K ,  
81,,,,(~) = C - ~ j - ~ j ) z j 1 , 2 , 3 ( ~ ) -  C y ( i n - g n ) 2 n 1 , 2 , 3 ( ~ ) ,  

in which 0, (i = 1,2 ,3)  denotes the volume flux between - (h, + h ,  +S) and z in region 
i. Integrating (30) between - h and z ,  we get 

1 N 1 -  
&,(z) = - ( E - F ) Z ( z ) -  C ?F,.@,(Z). 

k n-1 k, 
Equations (33) and (36) imply that 

&,(z) = &&), - h  < z < 0;  

&,(z) = 0, -h,  < z < - h ;  

&,(z) = O ,  

&,(z) = 0, 

-(hl+h2+6) < z < - ( h , + 6 ) ;  

- (h,  +a) < z < - h,. 

Note that 0, is continuous in z,  and the matching is done over the larger depth 
(h,+h,+S) in order to satisfy the boundary condition on the upstream wall of the 
trench (equation (33)). Upon using (15), we obtain ( J + N )  linear integral equations: 

'(Aj-Bj) 1 = - @ h & 5 ( ~ ) z j ~ ( ~ ) d z + ~ ~ 5 ( 0 ) z j , ( o )  (j = 1>2y-** ,J) ,  (51) 

KI 

The remaining (N+ 1) equations are constructed from the condition of continuity 
of vertical velocity a t  x = 0. I n  this case, we only need to be concerned with the 
vertical velocities in the interval between - h and 0. The results are 

(53) 
9 E + F  = - G;(O,z)Z(z)dZ+,tE;(O,O)Z(O), U 

@ h  

(54) 
9 

zzI;(O, z )  &,(z) dz +3&i(0, 0) Z , ( O )  (n  = 1,2 ,  .. .,N). 
',= - @ h  U 

The integrals in (51)-(54) can be evaluated in terms of trigonometric functions and 
hyperbolic functions. The set of ( J +  2N+ 1)  simultaneous equations are solved 
numerically as a linear matrix equation. After the coefficients are found, the 
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horizontal and vertical velocities at x = 0 are computed and the matching conditions 
are checked for the solution accuracy. We found, numerically, that  the series 
expansions for the three-layer fluid converge much faster than those for the 
homogeneous fluid, so that the contributions of the non-propagating modes to the 
series expansions are negligible after the first few terms. However, a series with a 
large number of terms does make the matrix equation more ill-conditioned, 
consequently the accuracy of the solution declines. In the numerical analysis, we 
have used J = 2 and N = 3, which give a good match of the horizontal velocity and 
the vertical velocity a t  x = 0. Since the density gradient at the interface was quite 
large in our experiments, the free surface mode and the primary internal mode 
dominate the wave motion in the trench region. 

2.2.2. Analysis of wave amplitude 
After the unknown coefficients are found, the velocities are determined for the 

entire fluid domain. Our main interest in this problem is the amplitude of the internal 
wave relative to the amplitude of the surface wave. From linear theory, the vertical 
displacement 17 of a fluid element from its undisturbed position is given by 

We define the amplification factor R as the ratio of the internal wave amplitude a t  
x = 0 to the surface wave amplitude at  x = 1, that is, 

The phase shift 0 between the internal motion and the surface motion at these 
locations is given by 

where ‘arg’ is the argument of a complex number. 

2.3. Wave damping 
The arrangement chosen for theoretical analysis is a closed system so that the wave 
amplitudes predicted by an inviscid theory will tend to infinity a t  resonance. This 
singularity can be removed by including viscous effects in the theoretical model. 

Since the viscosity of water is very small, viscous dissipation is significant only in 
the boundary layers adjacent to  the sidewalls and the bottom of the wave tank. I n  
addition, the boundary layers are very thin so that the overall fluid motion outside 
the boundary layers can be predicted well by the inviscid solutions. The effect of 
viscosity on the propagating waves is to cause a slow attenuation of the wave 
amplitude with distance and to decrease the phase speed and the wavelength. 
Viscosity has negligible effects on the non-propagating local disturbances because 
their amplitudes decay exponentially with distance from the trench and from the 
wave generator. Hence, viscous effects are treated by replacing the real-valued 
wavenumbers of the propagating waves in the exponents in (27)-(32) by complex- 
valued wavenumbers; the real part of the complex wavenumber is related to the 
wavelength, and the imaginary part gives the spatial attenuation rate. The velocities 
a t  x = 0 are matched as before ; thus the equations in $2.2 are otherwise unchanged. 
This approach is valid because the boundary layers are very thin, so that the overall 
fluid motion may be treated as inviscid. 

O(z )  = arg {r(O, z,  t ) }  - arg {qV, 0, a, (57) 



266 F.  C .  K.  Ting 

Mei & Liu (1973) have found the complex wavenumber for time-periodic 
progressive waves in a homogeneous fluid in a rectangular channel. Writing the 
complex wavenumber as k +  (1 + i)k*, then k is that part of the wavenumber obtained 
using inviscid theory (equation (17)) and is real; the part ( l+i)k* is due to the 
viscosity, with k* given by 

(58) b 2u 2khfsinh2kh 1 ' k* = - ( - ) I (  k v 3 2kb+sinh2kh 

where 2b is channel width, and v is the kinematic viscosity. 
We now present the complex wavenumber for progressive waves in a three-layer 

fluid. Let (2, y, z )  be a Cartesian coordinate system with the x-axis on the undisturbed 
free surface coinciding with the channel axis and z extending positive upwards. The 
sidewalls of the rectangular channel are located a t  y = b and y = - b .  The rate of 
amplitude attenuation is found by balancing the difference in the flux of wave energy 
between two vertical sections of the channel to the rate of energy loss in the fluid 
between the two vertical sections. For waves travelling in the positive x-direction, 
the horizontal velocity, the vertical velocity, and the dynamic pressure can be 
written as follows (see Yih 1980) : 

where A is an arbitrary constant, and f(z) is the eigenfunction of the three-layer fluid. 
In the bottom boundary layer, the horizontal velocity uB is given by the sum of 

the inviscid part uo and the viscous correction, that is, 

where the subscript B denotes the bottom. Denote the rectangular coordinates by xt 
(i = 1,2,3), with x1 = x, x2 = y, x3 = z and the corresponding velocity components by 
ui. The average rate of energy dissipation over one wave period in a control volume 
is given by 

where summation over repeated indices is implied. The principal contribution to (63) 
from the bottom boundary layer in the region between x and x + d x  is given by 

By symmetry, we only need to consider the boundary layer adjacent to the sidewall 
y = b. The horizontal velocity and the vertical velocity are given by 
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where the subscript W denotes the sidewall. The net contribution to (63) from the 
sidewall boundary layers at  y = b and y = - b is given by 

Equations (64) and (67) include all the energy losses that are proportional to ui. It 
can be seen in (63) that energy dissipation in the density transition region is 
proportional to u, and therefore is neglected at the present order of approximation. 
The average rate at  which work is done over one wave period across a section of the 
rectangular channel is - - 

dW = g l + T r  p,u,dz 
dt T -(h1+h2+8) 

The difference between the energy crossing the planes x and x + dx is equal to the 
energy dissipated in the region between x and x + dx. Define the attenuation rate K* 
by 

A = Aoe-K*5, (69) 

where A ,  is a constant. From (64), and (67)-(69) the attenuation rate K* is found: 

The integrals in (70) can be evaluated in terms of trigonometric and hyperbolic 
functions. Note that the method of energy balance does not yield the real part of the 
complex wavenumber, which is related to the wavelength. Dore (1969a, b )  used a 
perturbation technique to obtain the complex wavenumber for non-homogeneous 
viscous fluids of general density and viscosity distributions. Dore showed that the 
viscous correction to the real part of the wavenumber is the same as the attenuation 
rate; thus the complex wavenumber is given by K +  (1 +i)K*. 

3. Experimental equipment and procedures 
A schematic diagram of the experimental arrangement is shown in figure 3. The 

experiments were conducted in a wave tank 36.6 m long, 0.61 m deep, and 0.394 m 
wide with glass walls throughout. A horizontal plywood false bottom was placed in 
the wave tank to create a rectangular trench 0.6m wide and 0.152m deep. The 
upstream wall of the trench was located 19.15 m from a bulkhead wave generator. 
The portion of the wave tank downstream of the trench was not used in this study 
and was sealed off from the rest of the wave tank by a plywood vertical wall. 

Time-periodic water waves were generated at one end of the tank by a bulkhead 
wave generator that moved in simple-harmonic motion. Wave period was measured 
using a digital counter that was accurate to 1/1OOOs.  The wave generator was 
controlled by an electrohydraulic servo-system. The system accepted an input 
voltage from a memory device that could store a 1000-point voltage time history; the 
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FIQURE 3. Experimental arrangement and locations of wave measurements. 

displacement time history of the wave plate was proportional to the voltage time 
history of the input signal. A feedback system consisting of a linear variable 
differential transformer minimized the difference between the desired position of the 
wave plate and the actual position. 

The experiments consisted of measurement of surface and internal wave 
amplitudes, and density stratifications. Surface wave amplitudes were measured 
using resistance wave gauges. Vertical positioning of the wave gauge during 
calibration was controlled by a stepping motor and was accurate to 1/30mm. 
Internal wave amplitudes were measured using a scanning laser beam and detector 
system. A detailed description of this instrument can be found in Ting & Raichlen 
(1988). Density stratifications in the trench were created using fresh water and salt 
water, the latter being pre-mixed with blue dye to make the interface distinguishable. 
Density profiles were inferred from conductivity measurements that were made 
using a miniature four-electrode conductivity probe ; a detailed discussion of the 
probe can be found in Head (1983). The probe was calibrated using 'standard' salt 
water solutions, and their exact densities were determined by weighing 100 om3 of 
each solution in a volumetric flask. 

Referring to figure 3, the depth of fresh water outside the trench was 15.2 cm; the 
trench was stratified with fresh water and salt water with a density difference of 5 % 
relative to fresh water. The experiments were conducted for the following fluid 
depths in the trench: (i) h, = 22.8 em, h, = 7.6 cm, (ii) h, = 26.6 cm, h, = 3.8 cm, and 
for two values of the interface thickness 6 = 1.3 cm and 6 = 2.5 cm. The depths h, and 
h, were respectively, measured from the undisturbed water surface and the trench 
bottom to the centre of the diffuse salinity interface. The interface thickness 6 is 
defined as the ratio of the maximum density difference between fresh water and salt 
water to the maximum density gradient in the diffuse salinity interface, that is, 

where Ap = p2-p1. 
The response curves for internal waves were constructed from results of many 

experiments. The following procedure was used to ensure that the density 
stratifications were closely reproducible. The trench was stratified by first filling the 
wave tank with fresh water to a depth of 15.2 cm above the false bottom. Salt water 
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was then introduced through a port in the bottom of the trench. The filling process 
created a density interface of thickness between 2 and 2.5 cm, which was reduced to 
approximately 0.5cm by selective withdrawal of fluid from the interface. The 
density profile was measured and the location of the dye interface was determined 
using the interfacial wave gauge (see Ting & Raichlen 1988). Then the stratified fluid 
was left undisturbed for 2-8 h. The experiments were conducted after the density 
interface had diffused to the required thickness. The interface thickness was 
determined from the density profile that was obtained 15 min after the experiment ; 
the actual experiments took approximately 17 min. Hence this value corresponded 
to a steady-state condition in the trench. 

The locations of the surface and internal wave measurements are shown in figure 
3 and labelled as 1,2,  and 3 for the surface wave gauges and 4 for the interfacial wave 
gauge. The time histories of the wave plate motion and of the water surface and 
density interface were recorded simultaneously from the start of the wave generator 
until conditions in the wave tank had reached steady state. 

4. Results and discussion 
4.1. Experiments with a deep lower fluid in the trench 

In these experiments, the depths h, and h, were 22.8 and 7.6 cm, respectively. The 
experiments were conducted for a range of wave periods associated with the lowest 
mode of oscillation of internal waves in the trench. Typical examples of density 
distribution in the trench are shown in figure 4 (a ,  b ) .  It is seen that the interface 
thickness increased during the experiment ; this was due to wave-induced mixing and 
molecular diffusion. Wave-induced mixing was observed as gradual blurring of the 
dye interface, notably at the trench walls. This occasionally generated a spurious 
signal at  the interfacial wave gauge, due to variation of the refractive index within 
the flow field. Nevertheless, the density interface remained stable in these 
experiments. For a surface of density discontinuity at z = -h, at some initial time 
t = 0, the density profile in the trench at a subsequent time t due to molecular 
diffusion is given by the following diffusion equation: 

where D, is the molecular diffusion coefficient, and erfc is the complementary error 
function. Substitution of (72) into (71) yields the following relationship for the 
interface thickness and the diffusion coefficient : 

s = (47cDmt)t (73) 

Hence, a diffusion coefficient can be calculated for the time interval ( t z - t l )  by 

The molecular diffusion coefficient of salt in water was determined experimentally. 
The mean from thirteen tests was 1.31 x lop5 om2 s-l, and the standard deviation was 
0.07 x cm2 s-l. With wave motion, (74) gives an apparent diffusion coefficient, 
which represents the rate of mixing due to wave motions as well as molecular 
diffusion. For example, in figure 4(a) the interface thickness increased from 0.54 cm 
after selective withdrawal to 1.41 cm after the experiment, during a time interval of 
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FIQVRE 4. Experimental density profiles for h, = 22.8 cm and h, = 7.6 cm. (a) Sharp interface: 
-0-, after selective withdrawal ; -0-, after experiment. ( b )  Diffuse interface: -0-, before 
experiment ; -0-, after experiments. 

116min. Using (74), the apparent diffusion coefficient is found to be 
1.94 x lop5 em2 s-l. Similarly, in figure 4 ( b )  the interface thickness before and after 
experiment was 2.22 and 2.61 cm, respectively, and the time interval between 
measurements of the density profile was 115 min, which yield a value of the apparent 
diffusion coefficient of 2.17 x cm2 s-l. The larger values of the apparent diffusion 
coefficient are attributed to wave-induced mixing. It should be noted that the 
internal waves in the trench were 'a t  resonance' in these two cases; the values of the 
apparent diffusion coefficient in most experiments were smaller than the above 
values. 
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FIQURE 5. Response curves for internal waves for a sharp density interface. The theoretical results 
are computed using h, = 22.15 cm, h, = 6.95 cm, S = 1.3 cm, and pJp, = 1.05. 0 ,  0.0035 < 
H, /h  < 0.01; x , 0.012 < H J h  < 0.016; A, 0.019 < H , / h  < 0.025; -, three-layer viscous theory; 
---, three-layer inviscid theory. 
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FIQURE 6. Relative phase angle between internal waves and surface waves. The theoretical 
results have the same conditions as in figure 5, and the symbols are the same as in figure 5. 

In figure 5, the amplification factor of the internal wave, H, /H, ,  is plotted as a 
function of kl, where k is the wavenumber of the surface wave in the constant-depth 
channel and 1 is the trench width. The mean value of 6 in these experiments was 
1.32 em, and the standard deviation was 0.12 em. The mean density of salt water was 
1.0497 g cm-,, and the standard deviation was 0.00084 g ~ r n - ~ .  The theoretical 
response curves are obtained using the three-layer model, with 6 = 1.3 cm, p2/p1 = 
1.05, and v = 1.0 x m2 s-l. The internal wave height at the top of the density 
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FIQURE 7. Comparison between the theoretical response curves for internal waves obtained 
using the two-layer model (-) and the three-layer model (----). 

transition region is computed because the interfacial wave gauge measured motion 
of the dye interface, which can be seen in figure 4(a ,  b )  to coincide with the top of the 
diffuse salinity interface. As shown in figure 5, the measured response curve is 
extremely peaked; the amplification factor H J H ,  attains a magnitude of about 24 
at resonance. To either side of the resonant peak the response decreases rapidly. The 
inviscid solutions tend to infinity a t  resonance (k l  = 0.393, T = 7.80 5). With 
damping, the maximum value of H,/H, is 37.17 (kl = 0.392, T = 7.83 s). Comparing 
experiment to theory, energy dissipation in the actual fluid is seen to be larger than 
that predicted by the viscous theory, which assumes laminar flow in the boundary 
layers. Nevertheless, the agreement between experiment and theory is good, 
indicating that linear theory may be adequate for these experimental conditions. In 
figure 6, the relative phase angle between internal wave motion and surface wave 
motion, i943, is plotted as a function of the relative wavenumber, kl. The relative 
phase angle is defined between - 180" and 180". The results of theory and experiment 
both show a shift from in phase to out of phase through resonance. 

In  figure 7 the response curves obtained using a two-layer model (Ting & Raichlen 
1988) and the three-layer model are compared for the inviscid case. From the two- 
layer model, the relative wavenumber kl corresponding to the lowest mode of 
resonance of internal waves is found to be 0.396 (T = 7.75 s). The effects of the 
density transition layer on the response curve are very small for these flow 
conditions ; the difference between the wave periods of resonance obtained using the 
two wave models when compared to the difference between the wave periods of 
resonance of the first and second modes is less than 2 %. This result is consistent with 
(21), which shows that for the surface mode and the primary internal mode the 
dispersion relation of a continuously stratified fluid of small density variations is 
similar to that of a two-layer fluid, if the thickness of the density interface is small 
compared to the wavelength of internal waves and the fluid depths. In these 
experiments, the values of K ,  S, S/h,, and S/h, were 0.07,0.03 and 0.1, respectively, 
which are indeed much less than unity. We shall see that the effects of the diffuse 
interface on the response curve increase as S increases and h, decreases. 
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FIGURE 8. Experimental surface and internal wave time histories for T = 7.7 s (kl = 0.398) and 

H ,  = 1.08 mm. 

The time histories of the internal waves and of the surface waves, from the start 
of the wave generator, are presented in figure 8 for a resonant condition of the 
internal waves in the trench. A characteristic beat pattern is seen in the surface wave 
rccord; this is due to  transient wave motion in the wave tank. A beat pattern is 
absent from the internal wave record because this wave period corresponds to a 
resonant condition for the internal waves. However, the growth of the internal waves 
is retarded owing to the changing amplitude of the surface wave envelope above the 
trench. 

An important feature shown in figure 8 is the symmetry of the internal wave profile 
about the mean, which suggests a linear model of wave-trench interaction for these 
experimental conditions. This is also supported by the good agreement between 
expcriment and linear theory in the response curve shown in figure 5. To establish a 
range of validity for the linear theory, we shall study the internal waves in the 
trench. 

Nonlinear standing internal waves have been studied by Thorpe (1968). For a two- 
layer fluid that completely fills a rectangular tank, the equation of the interface to  
second order for a small density difference is 

(T, - T,) (T, T2-3 cos 2 d )  cos ~ K x ,  (75) 
a2K 

y ( z , t )  = asinatcosKx+- 8T: Ti 

where h,, h, are the depths of the upper and the lower fluid, respectively, a is the wave 
amplitude, K is the wavenumber, and = tanhKht (i = 1,2). Equation (75) does not 
depend on the wave generation mechanism, and is therefore suitable for investigating 
the general characteristics of standing internal waves. Thorpe (1968) also presented 
a more complicated result for a free upper surface. This is not used here because in 
the trench problem the internal wave mode is excited, the surface wave disturbance 
may be considered small and the solution for the interface tends to the solution for 
a fixed upper boundary. 
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FIGURE 9. Comparison between the internal wave extrema for experiments (0) and 
second-order theory (equation (75)) ( x ). 

The second-order term in (75 )  distorts the symmetric waveform of the linear 
solution given by the first-order term; the distance from trough to crest remains 
constant for the second-order approximation. Equation ( 7 5 )  is valid if the ratio of the 
coefficient of the second-order term to that of the first is much less than unity, that  
is, if 

4 T ,  - T,)(3 + TIT,) I 8TiTi 

If one of the fluids is deep and the other shallow, of depth h, (76 )  reduces to 

3H 
16Kh2 ‘ ” 

(76 )  

(77 )  

where H = 2a. 
The contributions of second-order effects to  the internal wave profile can be 

determined from (76 )  or (77 )  once the wave height is known. Conversely, (76 )  or (77 )  
may be used to  impose a limit on the linear theory. I n  figure 9, the wave extrema of 
internal waves, r4, normalized by h,, are plotted as a function of K ,  h,. These are 
shown for the same experiments that  were presented in figure 5 .  The measured crest 
and trough amplitudes of internal waves are compared to  the theoretical solutions of 
(75 ) .  In  the theoretical solutions, the wavenumber K is computed using (19) for the 
internal wave mode, and the first-order wave amplitude a is assumed equal to the 
measured value of +H4. Good agreement is seen between the observed and the 
computed wave amplitudes. This means that second-order effects in the internal 
wave motions are small, because (75 )  is only valid for weakly nonlinear waves. In  
figure 9, the maximum value of H4/h2  is 0.382 (K,h, = 0.399). The corresponding 
ratio of the amplitude of the second-order term in ( 7 5 )  to that of the first is found to  
be 0.144, which indeed is much less than unity. I n  figure 10, the profiles of the density 
interface for a wave period of 7.7 s (kl = 0.398) are shown; the internal waves were 
near resonance. The agreement between the observed and the calculated wave 
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FIGURE 10. Internal wave profiles for the lowest mode of oscillation in the trench for T = 7.7 s and 
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FIQURE 1 1. Response curves for internal waves for a diffuse density interface. The response curves 
by the three-layer model are for h, = 21.55 cm, h, = 6.35 cm, 8 = 2.5 om, and p2/p1 = 1.05. 0,  
Experiment ; -, three-layer viscous theory ; ---, three-layer inviscid theory ; , two-layer 
inviscid theory. 

profiles is quite good. Note that the standing internal waves do not have a true node 
at x / l  = 0.5 owing to second-order effects in the wave profiles. Figures 9 and 10 show 
that the good agreement between experiment and linear theory observed in the 
response curves in figure 5 is indeed associated with weakly nonlinear internal waves 
in the trench. 

The experimental results for an interface thickness of 2.5 cm are shown in figure 11. 
For these experiments, the mean value of S was 2.46 cm, and the standard deviation 
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was 0.06 cm; the mean density of salt water was 1.0507 g ~ m - ~ ,  and the standard 
deviation was 0.0005 g There is a small but definite shift in the resonant 
frequency of the internal waves compared to that predicted by the two-layer model ; 
the difference between the wave periods of resonance for the lowest mode obtained 
using the two-layer model and the three-layer model when compared to the 
difference between the wave periods of the first and the second resonant modes is 
about 6%. The relative wavenumber kl corresponding to the lowest mode of 
resonance as predicted by the two-layer inviscid model, the three-layer inviscid 
model, and the three-layer viscous model, respectively, are 0.396, 0.386, and 0.383. 
The corresponding wave periods are 7.75,7.95, and 7.99 s. The effect of increasing the 
thickness of the density interface is to decrease the resonance frequency. This is 
because the density of the quiescent fluid, p,  which represents the inertia of the fluid, 
is almost unchanged by increasing the interface thickness, whereas the restoring 
force responsible for the existence of wave motion, represented by gq dp/dz, where 17 
is the vertical displacement of a fluid element from its undisturbed position, 
decreases as 6 increases. The frequency of the motion will decrease with smaller 
restoring force, which is the case shown here. Comparing figure 11 to figure 5 it is seen 
that the magnitude of the amplification factor obtained using the three-layer model, 
is relatively insensitive to these changes in the thickness of the density interface. 

4.2. Experiments with a shallow lower Jluid in the trench 
For finite-amplitude standing waves at  the interface of two fluids of small density 
difference, the ratio of the coefficient of the second-order term in the wave profile to 
that of the first is given by (76). This ratio reduces to 3H/16Kh2 when one of the fluids 
is deep and the other shallow of depth h. The linear theory predicted the wave motion 
in the trench quite well when the value of this parameter was much less than unity. 
Because the dimensionless parameter H/Kh2 varies inversely as the square of the 
depth h, it is expected that nonlinear effects in internal waves in the trench will be 
more important as the depth of the lower fluid h, decreases. However, the rate of 
viscous dissipation in the bottom boundary layer, normalized by the energy density 
of internal waves, is proportional to cr2((tva)+/(gAp/p,)/ sinh2 K,h,. The effect of 
decreasing h, is to increase the horizontal velocity next to  the trench bottom and to  
decrease the resonant frequency. The net result is to increase the shearing motions 
in the bottom boundary layer and hence the viscous dissipation rate. In a shallow 
lower fluid, the effects of nonlinearity and dissipation may compete with each order 
and thus produce more complicated behaviour. To investigate this, the depth of the 
lower fluid h, was reduced to 3.8 cm, while the total depth of the fluid in the trench 
and the density difference between layers were kept fixed. Thus, the value of 
HJK,  hi would be increased fourfold for the same wave height H, and wavenumber 
K, of the internal wave. 

In  figure 12, the amplification factor H,/H3 is plotted as a function of kl for the 
lowest resonant mode. For these experiments, the mean value of 6 was 1.31 cm and 
the standard deviation was 0.09 cm ; the mean value of p, was 1.0506 g and the 
standard deviation was 0.0008 g ~ m - ~ .  The theoretical response curves are computed 
using 6 = 1.3 cm and z = -25.95 em. The three-layer inviscid model predicts that 
resonance of the internal wave will occur a t  kl = 0.306 (T = 10.05 s). I n  comparison, 
the two-layer inviscid model predicts that resonance will occur at kl = 0.31 (T = 
9.9s). The difference between the wave periods of resonance predicted by the two 
wave models, when compared to the difference between the wave periods of the first 
and second modes of resonance, is 3.3%. This compares to  a value of less than 2 % 
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FIGURE 12. Response curves for internal waves for a sharp density interface. The theoretical 
results are computed using h, = 25.95 cm, h, = 3.15 cm, 6 = 1.3 cm, and p,/pl = 1.05. 0,  0.013 < 
H,/h < 0.023; x ,0.027 < H , / h  < 0.045; A, 0.076 < H,/h < 0.082; -, three-layer viscous theory; 
---, three-layer inviscid theory. 

for the case of the deep lower fluid, reflecting this increase in the effect of the density 
transition layer on the internal wave motions in the trench. This is not a surprising 
result because from (21) we expect that the density transition region should have a 
more pronounced effect on the response curve for a larger value of 6/h,. Nevertheless, 
the wave period of resonance predicted by the two-layer model is sufficiently 
accurate for these experimental conditions ; we should expect greater errors as the 
value of S/h, increases. 

Comparing figure 12 to figure 5, the amplitudes of internal waves have decreased 
substantially through the decrease in h,. As the relative depth K ,  h, is reduced from 
0.4 to 0.2, the theoretical prediction of the amplification factor H 4 / H 3  at resonance 
decreases from 37.17 to 8.2, and the observed value of H , / H ,  decreases from 24 to 6 
approximately. There is a less notable difference in the frequencies of resonance 
predicted by the inviscid theory and the viscous theory. With damping, the three- 
layer model predicts that the resonant peak occurs a t  kl = 0.301 (T = 10.17 s). This 
compares to a value of kl of 0.306 (T = 10.05 s )  from the three-layer inviscid model. 
Increases in viscous effects can also be seen from the variation of relative phase angle 
between internal wave motion and surface wave motion (figure 13). In comparison 
with figure 6, both theory and experiment show a more gradual change of O,, from 
in phase to out of phase through resonance, reflecting this increase in viscous 
dissipation. It is noted that in these experiments, viscous dissipation in the trench 
was concentrated in two regions: in the boundary layer adjacent to the trench 
bottom, and in the boundary layers next to the sidewalls. In  comparison, the energy 
loss at the trench walls at x = 0 and 5 = 1 was very small. This is because the 
horizontal component of the fluid velocity was much larger than the vertical 
component for the lowest mode of oscillation. In addition, the total energy loss in the 
upper fluid was much smaller than that in the lower fluid because, for the internal 
waves, the water particle velocities decreases rapidly with distance from the density 
interface in the upper fluid but they decrease much more slowly in the lower fluid. 
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FIGURE 13. Relative phase angle between internal waves and surface waves. The theoretical 

results have the same conditions as in figure 12, and the symbols are the same as in figure 12. 

In  fact, owing to the long waves used, the amplitude of the horizontal velocity was 
almost uniform with depth in the lower fluid. This means that the energy loss 
attributed to the trench bottom and to the sidewalls should be roughly in proportion 
to the surface areas b/h, ,  which is 5.2. Hence, the bottom boundary layer was the 
prime source of viscous dissipation in these experiments. 

Figure 12 indicates that  viscous dissipation in the actual fluid was somewhat larger 
than that predicted by laminar flow. Nevertheless, the agreement between 
experiment and linear theory is good, even though nonlinear effects are significant in 
this problem. Nonlinear effects were clearly seen in the wave profiles of internal 
waves. In  figure 14 the time histories of the internal waves and of the surface waves 
are presented for a wave period of 10 s, which corresponds to a resonant condition in 
the trench. As seen in figure 14 the waveforms of the internal waves are non- 
symmetrical about the quiescent density (dye) interface, whereas the waveforms of 
the surface waves appear to be symmetrical about the mean water level. The latter 
indicates that  nonlinear effects in the surface wave profiles are small. It is also 
important to note that the response curve of figure 12 results in an efficient filter for 
frequencies away from resonance, so that the high-frequency components in the 
surface waves contribute very little to the motion of the internal waves. Thus, the 
non-symmetrical waveforms observed in the internal wave record are due to truly 
nonlinear behaviour in the internal wave motions. 

The linear theory is reasonably good in predicting the resonant frequency and the 
shape of the response curve, but i t  describes the wave profile poorly. The ratio of the 
crest amplitude to  the trough amplitude of the internal wave in figure 14 is 3.1 at 
steady state. It is interesting to compute the ratio of the second-order term in (75) 
to that of the first, even though the solution given by (75) is clearly invalid for these 
experimental conditions. From (75), with H, /h ,  = 1.079, K,h,  = 1.393, and K,h,  = 
0.199, we obtain an amplitude ratio of 0.972 for the second-order term, which is 
indeed large, indicating that nonlinear effects are important. We also note that the 
wave heights of internal waves were large compared to the depth of the lower fluid. 

The time evolution of the density interface across the trench is presented in figure 
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FIQURE 14. Experimental surface and internal wave time histories for 
T = 10.0 s (kl = 0.306) and H ,  = 4.95 mm. 

15. The data points were obtained from the steady-state wave records; the elevations 
of the density interface at different locations across the trench were obtained by 
matching the phase of the surface waves. The travelling wave pattern is clearly seen; 
the internal wave looks like a single 'hump' of fluid travelling back and forth in the 
trench. It is evident that Thorpe's finite-amplitude wave theory cannot describe 
these internal waves. The results of a study by Helal & Molines (1981) indicate that 
this class of nonlinear internal waves can be modelled by shallow water wave theory. 
Helal & Molines (1981) conducted experiments in a rectangular tank that was 
partially filled with a two-layer fluid of fresh water and salt water ; the fluid depths 
were small compared to the length of the tank. Helal & Molines generated internal 
waves by oscillating the tank horizontally in a sinusoidal manner at the resonant 
frequencies of the internal waves. They also constructed a theoretical solution for the 
internal waves in the tank in the form of two internal cnoidal waves of the same 
amplitude travelling in opposite directions. Helal & Molines showed experimentally 
that the waves in the oscillating tank could be represented by a linear superposition 
of cnoidal-shaped waves and a sine wave shape; the sine wave component was due 
to the oscillatory motion of the tank. For navigation trenches, travelling internal 
waves like those shown in figure 15 are perhaps of greater practical importance than 
the standing internal waves shown in figure 10, because the width of navigation 
channels, and the wavelength of internal waves, are typically much larger than the 
fluid depths. A formulation based on shallow-water wave theory including viscous 
dissipation would be useful for investigating this problem. 

Finally, we present in figure 16 the results of those experiments where the interface 
thickness was 2.5 cm. In these experiments, the mean value of 6 was 2.44 em, and the 
standard deviation was 0.04 em ; the mean density of the lower fluid (salt water) was 
1.0496 g and the standard deviation was 0.0017 g ~ m - ~ .  Also shown in figure 16 
are the theoretical solutions of the three-layer model and the two-layer model. The 
solutions of the three-layer model are computed using z = -25.35 em and 6 = 
2.5cm. The relative wavenumber kl at resonance as predicted by the two-layer 
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FIGURE 15. Time evolution of the density interface in the trench for T = 10.0 s and HJh,  = 1.079. 
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FIGURE 16. Response curves for internal waves for a diffuse density interface. The response curves 
by the three-layer model are for h, = 25.35 cm, h, = 2.55 cm, 6 = 2.5 cm, and p2/pI = 1.05. 0,  
Experiments ; -, three-layer viscous theory ; ---, three-layer inviscid theory ; -.-, two-layer inviscid 
theory. 
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inviscid model, the three-layer inviscid model, and the three-layer viscous model are 
0.31, 0.295 and 0.292, respectively. The corresponding wave periods are 9.9, 10.38, 
and 10.51 s. The difference between the wave periods of resonance predicted by the 
two-layer inviscid model and the three-layer inviscid model when compared to the 
difference between the wave periods of the first and the second modes of resonance 
is about 11 %. The limited experimental data available tend to support the 
predictions of the three-layer model. Figure 16 emphasizes the importance of 
including the density transition region to correctly predict the response curve for 
internal waves in a shallow lower fluid. 

5. Conclusions 
To cxamine the interaction of water waves with a density-stratified fluid in a 

rectangular trench, a linear model was developed for steady-state flow conditions, 
and expcriments were conducted in which internal wave motions at  the interface of 
a stratified fluid of fresh water and salt water were measured using a laser-optics 
detector system. In the theoretical model, the density distribution in the trench was 
approximated by two homogeneous fluids of different densities separated by a 
transition region of linear density variation, and viscous effects were treated based 
on the assumption of a laminar boundary layer. Internal wave profiles obtained by 
experiments were compared to Thorpe’s finite-amplitude wave theory. The following 
main conclusions can be drawn from this investigation: 

( i )  The three-layer model predicts the response curve based on internal wave 
height quite well in all the cases investigated, even when nonlinear effects are 
important. The effects of viscosity and of a diffuse density interface on the response 
curve are also predicted well by the three-layer model. 

(ii) When the ratio of internal wave height to the depth of lower fluid, Hlh, ,  is 
small compared to the dimensionless wavenumber for the internal wave K ,  h,, the 
profiles of internal waves in the trench at steady state obtained by experiment 
compare well to the standing wave shape of Thorpe’s finite-amplitude wave theory. 

(iii) Nonlinear effects in internal wave motions were more apparent when the value 
of H / K ,  hi was increased by decreasing the depth of the lower fluid h,. The observed 
waveforms were non-symmetrical about the quiescent density interface, and the 
internal wave motions looked like a single ‘hump ’ of fluid travelling back and forth 
inside the trench. 

(iv) The frequency of resonance of the trench decreases as the thickness of the 
density interface increases ; the frequency shift is predicted well by the three-layer 
model. When the thickness of the density interface is large compared to the depth of 
the lower fluid, the response curves for internal waves obtained using the two-layer 
model and three-layer model differ significantly. 

(v) The response curve for internal waves is very sensitive to viscous effects. When 
the depth of the lower fluid is small compared to the wavelength of internal waves, 
viscous dissipation in the trench bottom boundary layer greatly reduces the 
amplitudes of internal waves and hence the effects of trench resonance. 

This work was funded by the Office of Naval Research under contract N00014-84- 
C-0617 and was conducted when the author was a graduate student a t  the California 
Institute of Technology. The guidance of Professor Fredric Raichlen, and the 
support of the faculty and staff of the W. M. Keck Laboratory of Hydraulics and 
Water Resources are deeply appreciated. 
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Appendix 
The following quantities are used in the text : 

Z(z) = (Ah)-4sinhk(z+h), (A 1) 

,@,(z) = (Ah,)-:sinL,(z+h) (n = 1,2, ...), (A 2) 

Zj,(z) = (/1;)-~(0~cos(O~K,6)+cothKjh,sin (OiKjS)) 

( j  = 1,2, ...), (A 5 )  
K,coshK,z+K,sinhK,z 

KO cosh Kj h, - Kj sinh K, h, 

sinhK,(z+h,+h,+S) 

X 

Z,,(z) = ( A ; ) - b  sinh K, h, , (A 6) 

Zj,(z) = (A;)-;( 6; cos (dK,(z + h, + 6)) + coth Kj h, sin (&K,(z + h, +a))), (A 7) 

&,,(z) = (A~)-~(&cosh (&R,6) + cot& h,sinh (@;k,S)) 
KocosK,z-K,sinK,z - - 

KO cosl?, h, + K ,  sinK, h, 

sing, ( z  + h, + h, + 6) 
sin K ,  h, 

X (n = 1,2, ...), (A 8 )  

,. (A 9) &,, ( z )  = (A",-;@ 

&,,(z) = (A~)-~(@cosh (@R,(z+h,+S)) 
+cotk,h,sinh(0~&(z+h1+6))),  (A 10) 

(sin (204 K, 6) - 1)} 
2&K, 6 

- 'Oth K3 hz (cos (204 Kj 6) - 1) - coth' K j  h, 
K, 6 

- Y cos (&K, 6) + coth Kj h, sin (&K, 6) 
KO cosh Kj h, - K, sinh K, h, 

x (0' 

+ cot 2, h, sinh (&& 6) - - 
KO cos K ,  h, + K, sin K ,  h, 
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